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This paper investigates the stability and large-displacement post-buckling behaviour
of liquid-lined elastic rings. The fluid flow and the wall deformation are described
by the free-surface Navier–Stokes equations and by geometrically nonlinear shell
theory, respectively. The fluid–structure interaction problem is solved numerically
by a finite element method. The compressive load on the ring is a combination of
the external pressure and the effect of surface tension. Once this combined load
exceeds a critical value, the subsequent non-axisymmetric collapse of the ring is
controlled by the dynamics of the surface-tension-driven redistribution of fluid in
the liquid lining. It is shown that, for sufficiently large surface tension, the ring can
undergo a catastrophic collapse which leads to a complete occlusion of its lumen. A
novel lubrication theory model, which ensures exact volume conservation for flows
on strongly curved substrates, is developed and found to be capable of accurately
describing the motion of the air–liquid interface and the fluid–structure interaction in
the large-displacement regime, even in cases where the film thickness is large.

The findings have important implications for the occurrence of airway closure in
lung diseases (such as oedema) which cause an increase in the thickness of the airways’
liquid lining. It is shown that under such conditions, airways can become occluded
even if the volume of fluid in their liquid lining is much smaller than that required to
occlude them in their axisymmetric state.

1. Introduction
The airways of the lung are thin-walled elastic vessels which are lined with a

thin liquid film. This liquid film can undergo a surface-tension-driven fluid-elastic
instability which may lead to airway closure via the formation of an occluding
liquid bridge (Halpern & Grotberg 1992). Airway closure in the small airways tends
to occur towards the end of expiration when the airway diameters are smallest
(Hughes, Rosenzweig & Kivitz 1970). In healthy adults, the occluding liquid bridges
rupture during the early stages of inspiration and do not interfere significantly with
gas exchange (West 1985; Forgacs 1978; Widdicombe & Davies 1991; and see e.g.
Howell, Waters & Grotberg 2000 for a model of airway reopening via liquid bridge
rupture and Gaver et al. 1996 for a model of the reopening of strongly collapsed
airways). However, in a variety of diseases, such as emphysema and cystic fibrosis,
airway closure can occur in the larger airways and persists for a much larger fraction
of the breathing cycle. In extreme cases, the airway can remain completely occluded.

† Author to whom correspondence should be addressed.
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This problem is particularly common in prematurely born infants whose lungs have
not yet begun to produce the surfactant that reduces the surface tension of the liquid
lining to normal levels. The elevated surface tension makes their airways strongly
liable to collapse and causes severe breathing difficulties. This condition is known
as neonatal Respiratory Distress Syndrome and is responsible for a large number of
infant deaths. It is important to understand the mechanisms leading to airway closure
in order to improve the treatment of such diseases.

Airway closure is initiated by the classical axisymmetric Rayleigh instability: the
liquid film inside a rigid cylindrical tube whose length exceeds its circumference is
unstable to axisymmetric perturbations which cause fluid to drain into axisymmetric
lobes (Rayleigh 1902). If the volume of fluid in the liquid lining is sufficiently
large, the nonlinear growth of the instability can reduce the minimum radius of
the axisymmetric air–liquid interface to zero and thus lead to the formation of an
axisymmetric occluding liquid bridge (see e.g. Johnson et al. 1991; Everett & Haynes
1972). If the volume of fluid is small, the air–liquid interface evolves towards an
unduloidal shape and the tube remains open.

The small radius of the distal airways and bronchioli results in considerable surface-
tension-induced pressure jumps over the highly curved air–liquid interfaces. These can
be large enough to induce large deformations of the airway walls. Halpern & Grotberg
(1992) showed that wall elasticity significantly reduces the minimum volume of fluid
required to form an occluding liquid bridge in an airway because the reduced fluid
pressure in the growing lobes pulls the airway walls radially inwards. This reduces
the minimum radius of the air–liquid interface and thus facilitates the formation of
an occluding liquid bridge.

Halpern & Grotberg’s (1992) study was restricted to axisymmetric deformations and
their results showed that, for parameter values which are representative of the condi-
tion in the small airways, the surface-tension-induced axisymmetric wall deformations
can be quite large (up to 10% of the tube’s undeformed radius). Motivated by the
observation that thin-walled cylindrical tubes tend to buckle non-axisymmetrically
when subjected to such strong compression, Heil (1999a, b) investigated the static
stability of elastic cylindrical tubes, occluded by axisymmetric liquid bridges. He
showed that, for Halpern & Grotberg’s (1992) parameter values, the axisymmetric
state is statically unstable to non-axisymmetric perturbations. This implies that, once
an axisymmetric liquid bridge has been formed, the airway wall will buckle strongly,
redistributing the fluid contained in the liquid bridge over a large axial distance.

Heil’s (1999b) study also showed that in non-axisymmetrically buckled tubes,
occluding liquid bridges can be formed with a fraction of the fluid volume required
to occlude a corresponding axisymmetric tube. In the context of the airway closure
problem, however, the mere existence of such non-axisymmetric occluding liquid
bridges of small volume does not guarantee that they can be realised in the course
of the system’s evolution from the initially uniform axisymmetric state. If the tube
wall does not buckle until an axisymmetric liquid bridge is formed, then airway
closure at smaller fluid volumes remains impossible. This observation forms the
motivation for the current study. We aim to determine if liquid-lined elastic tubes
that do not contain enough fluid to form an axisymmetric occluding liquid bridge can
undergo a non-axisymmetric instability that leads to airway closure. Ultimately, this
question must be addressed by studying the time-dependent stability of the evolving
axisymmetric system (undergoing Halpern & Grotberg’s 1992 primary instability)
to non-axisymmetric perturbations. In the present paper, we consider a simplified
two-dimensional model problem in which a liquid-lined elastic ring is subject to an
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external pressure p∗ext (representing the pleural pressure acting on the airway) and
to the additional compression due to the surface tension at the air–liquid interface.
We wish to investigate the time-dependent behaviour of this system once p∗ext has

exceeded the buckling pressure p∗(buckl)ext . The value of p∗(buckl)ext follows from the static
stability analyses of Hill, Wilson & Lambert (1997) and Rosenzweig & Jensen (2002).
These studies also provide an overview of the system’s multiple non-axisymmetric
equilibrium configurations which represent the possible asymptotic states towards
which the system can evolve after the loss of stability. A time-dependent analysis
is required to determine (i) which of these equilibrium states are realizable via a
continuous evolution from the axisymmetric pre-buckling state and (ii) the timescale
over which this evolution takes place.

Since the two-dimensional model considered in this study neglects any axial vari-
ations, it is important to assess beforehand how any results might be affected by three-
dimensional effects in the airways of the lung. We believe that a three-dimensional
tube, lined with a liquid film of a given thickness, will always be more unstable than
the corresponding ring. This assumption is based on the following argument: a ring,
lined with a constant volume of fluid, can only become unstable to non-axisymmetric
perturbations if the external pressure is raised above the buckling pressure. In a three-
dimensional tube, the axisymmetric redistribution of fluid caused by the Rayleigh
instability results in a significant increase in the film thickness and hence in an
increase in the tube’s compression in the regions where the axisymmetric lobes are
being formed. This additional, local compression can become strong enough to cause
the axisymmetric state to lose its stability. Therefore, any parameter combinations for
which airway closure is predicted in the two-dimensional system can also be expected
result in airway closure in the corresponding three-dimensional system.

The outline of the paper is as follows: § 2 provides a detailed description of
the model problem and introduces the wall model and the two fluid models (the
Navier–Stokes equations and a volume-conserving lubrication theory model) used to
represent the flow in the liquid lining. The numerical technique employed to solve the
coupled fluid–structure interaction problem is discussed next. Section 3 presents the
results of the computations and investigates the accuracy of the volume-conserving
lubrication theory model. The success of this simple model provides insight into the
fluid mechanics in this problem. Finally, § 4 discusses the relevance of the results for
the airway closure problem.

2. The model
We consider the following model problem: a uniform elastic ring of wall thickness

h, undeformed radius R0 and density ρw is lined with a viscous fluid of viscosity µ,
density ρ and surface tension σ∗. The volume of fluid in the liquid lining is such
that it forms a film of uniform non-dimensional thickness H0 = H∗0/R0 when the ring
is undeformed; throughout this paper superscript stars will be used to distinguish
dimensional quantities from their non-dimensional equivalents. The ring is subject to
an external pressure p∗ext relative to the air pressure in the lumen which we arbitrarily
set to zero.

2.1. The wall equations

We use geometrically nonlinear shell theory to describe the deformation of the thin-
walled elastic ring in response to the load f∗ exerted on it by the liquid lining and
the external pressure. For this purpose we parametrize the non-dimensional position
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Figure 1. (a) Sketch of the wall deformation: a material point at rw(ζ) on the undeformed ring
(dotted) is displaced by the displacement field v(ζ) to a new position Rw(ζ) on the deformed ring
(solid); tw and nw are the unit tangent and normal vectors on the undeformed wall, respectively, and
ζ is the Lagrangian coordinate along the ring’s centreline. (b) Sketch illustrating the automatic fluid
mesh generation in a (slightly less collapsed) ring: the nodal points are spaced uniformly along the
spines S(ζ) which emanate from the deformed wall and form an angle α with the inner wall normal
N (ζ). The free surface is parametrized by its ‘height’ h(ζ) along the spine. T (ζ) is the unit tangent
to the deformed wall and t and n are the unit tangent and normal vectors to the free surface, the
arclength along which is given by S .

vector to material particles in the undeformed configuration, rw = r∗w/R0, by the non-
dimensional Lagrangian coordinate ζ = ζ∗/R0, measured along the ring’s centreline
such that rw(ζ) = (cos(ζ), sin(ζ)). When the ring deforms, material points are displaced
by the vector v(ζ) such that their new position becomes Rw(ζ) = rw(ζ) + v(ζ). We
decompose the displacement vector into its tangential and radial components (relative
to the reference configuration), i.e. v = v1tw + v2nw; see figure 1(a).

Buckling of thin-walled rings typically involves large transverse deflections which
are accompanied by small extensional deformations. Therefore, we assume that the
relation between stress and strain is given by the plane strain Hooke’s law. Under these
conditions, the principle of virtual displacements which governs the ring’s deformation
is given by∫ 2π

0

[
γδγ +

1

12

(
h

R0

)2

κδκ− 1

12

(
h

R0

)3((
R0

h

)
f − λ2

T

∂2Rw

∂t2

)
· δRw

]
dζ = 0, (1)

see e.g. Wempner (1981).
Here γ and κ are the ring’s mid-plane strain and bending measures (see Appendix

A) and f = f∗/K is the load vector, non-dimensionalized by the ring’s bending
stiffness K = E(h/R0)

3/[12(1 − ν2)], where E and ν are the ring’s elastic modulus
and Poisson ratio, respectively. Time is non-dimensionalized by the fluid timescale
t = t∗/T where T = µR0/σ

∗ (see below) and

λT =
Tw

T
=
σ∗

µ

√
ρw

K
(2)

represents the ratio of the timescale Tw = R0

√
ρw/K for bending oscillations of the

ring to the timescale T for the surface-tension-driven redistribution of fluid in the
liquid lining.

Carrying out the variations with respect to the displacements vi and their derivatives
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transforms equation (1) into a variational equation of the form∫ 2π

0

(φ(0)
i δv

i + φ
(1)
i δv

i
,ζ + φ

(2)
i δv

i
,ζζ) dζ = 0, (3)

where commas denote partial derivatives. The summation convention is used and,
unless stated otherwise, all subscripts range from 1 to 2. We exploit the symme-
try of the two-lobed configuration and discretize only one quarter of the ring by
displacement-based finite elements. The φ-terms contain up to second derivatives of
the displacements, therefore we need shape functions with continuous first derivatives
across the element boundaries. Isoparametric Hermite elements with nodal displace-
ments and slopes as independent degrees of freedom (Bogner, Fox & Schmit 1967)
were chosen such that the displacements vi were interpolated as

vi =
∑
j,k

V ijkψjk, (4)

where the ψjk are piecewise Hermite polynomials. In terms of the local node numbers
and the local element coordinate, s ∈ [0, 1], these shape functions are given by
ψ11(s) = 2s3 − 3s2 + 1, ψ12(s) = s3 − 2s2 + s, ψ21(s) = −(2s3 − 3s2) and ψ22(s) = s3 − s2.
The first index of the shape function ψjk represents the local node number (j = 1, 2);
the second index (k = 1, 2) represents the type of degree of freedom, interpolating
the displacement or the derivative with respect to the local coordinate s, respectively.
The time derivative was discretized by the Newmark method (see e.g. Bathe 1996).

To generate isoparametric elements, the same shape functions were used to map
the local coordinate s to the global Lagrangian coordinate ζ,

ζ =
∑
j,k

Zjkψjk. (5)

Details of the choice of the coefficients Zjk can be found in Heil & Pedley (1996).
We insert (4) and (5) into (3) and obtain{∫ π/2

0

(φ(0)
i ψjk + φ

(1)
i ψjk,ζ + φ

(2)
i ψjk,ζζ) dζ

}
δV ijk = 0. (6)

The variations of those V ijk which are not determined by the symmetry conditions
are arbitrary and the expressions multiplied by the corresponding δV ijk have to
vanish. This provides a system of nonlinear algebraic equations for the unknown V ijk .
These equations still contain the load terms f, which have to be determined from
the solution of the fluid equations. The integrals over the elements were evaluated by
Gaussian quadrature using at least 3 integration points (more points were used in
regions of large pressure gradients).

2.2. The fluid equations

2.2.1. Navier–Stokes

The surface-tension-driven flow in the liquid lining is governed by the non-
dimensional Navier–Stokes equations

Re

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − ∂p

∂xi
+

∂

∂xj

(
∂ui

∂xj
+
∂uj

∂xi

)
(7)
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and
∂ui

∂xi
= 0. (8)

The velocity scale U in the problem is set by the balance of surface tension and
viscous effects, i.e. U = σ∗/µ. This scale was used to non-dimensionalize the velocities,
ui = u∗i /U. The Cartesian coordinates x∗i = R0xi and all lengths were scaled on the
ring radius R0 which determines the fluid timescale T = R0/U = R0µ/σ

∗ already
referred to earlier. The corresponding Reynolds number is Re = ρR0U/µ = ρσ∗R0/µ

2.
Using this non-dimensionalization, the viscous pressure scale is equal to the capillary
pressure scale and we have p = p∗R0/σ

∗ = p∗R0/(µU).
At the free air–liquid interface, whose position is described by the position vector

Rh, we have the kinematic free-surface condition

u · n =
∂Rh
∂t
· n at the air–liquid interface, (9)

and the dynamic boundary condition

−pni +

(
∂ui

∂xj
+
∂uj

∂xi

)
nj − κhni = 0 at the air–liquid interface, (10)

where n is the outer unit normal on the air–liquid interface whose non-dimensional
curvature is given by κh = R0κ

∗
h.

The numerical technique employed to solve the Navier–Stokes equations on the
variable domain enclosed by the free air–liquid interface and the deforming wall is
illustrated in figure 1(b). We decompose the fluid domain into finite elements whose
nodal positions are determined by the method of spines (Kistler & Scriven 1983). For
this purpose we parametrize the free surface position by its distance h(ζ) from the
wall. The distance is measured in the direction of certain pre-determined unit vectors
S (the spines) which form an angle α with the inner normal N on the wall. Since the
spines emanate from given material points, we use the Lagrangian wall coordinate ζ
to parametrize the free surface as

Rh(ζ) = Rw(ζ) + h(ζ)S(ζ). (11)

The spines not only resolve the free-surface position but also facilitate the automatic
adjustment of the fluid mesh to changes in the fluid domain: we associate each nodal
point j in the fluid mesh with a fixed material point on the wall and identify it by its
Lagrangian coordinate ζ(ref )

j . As the wall and the free surface deform, the fluid node
remains located at a fixed, predetermined fraction ωj ∈ [0, 1] along its spine such that
the position vector to fluid node j is given by

Rj = Rw(ζ(ref )
j ) + ωjh(ζ

(ref )
j )S(ζ(ref )

j ). (12)

We discretize the fluid equations with standard isoparametric Taylor–Hood-type
elements (Taylor & Hood 1973) so that the velocities, the global coordinates and the
pressure are represented by

ui =
∑
j

Uijψ
(F)
j , xi =

∑
j

Xijψ
(F)
j and p =

∑
j

P jψ
(P )
j , (13)

where the ψ(F)
j and ψ

(P )
j are bi-quadratic and bi-linear shape functions in the local

element coordinates, respectively. Xij are the nodal coordinates, given by (12). The
free-surface height h(ζ) and the spine angle α(ζ) are discretized by one-dimensional
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isoparametric quadratic elements:

h =
∑
j

Hjψ
(H)
j , α =

∑
j

Ajψ
(H)
j and ζ =

∑
j

Z̃ jψ
(H)
j , (14)

where Z̃ j = ζ
(ref )
j and the ψ(H)

j are one-dimensional piecewise quadratic shape func-
tions.

The residuals of the momentum equations (7) are weighted by the velocity shape
functions ψ(F)

l and the dynamic boundary condition (10) is incorporated by partial
integration (Ruschak 1980). This yields

f
(F)
il =

∫∫ [
Re

(
∂ui

∂t
+ (uj − u(M)

j )
∂ui

∂xj

)
ψ

(F)
l − p∂ψ

(F)
l

∂xi
+

(
∂ui

∂xj
+
∂uj

∂xi

)
∂ψ

(F)
l

∂xj

]
dv

−
∫
ti
∂ψ

(F)
l

∂S
dS = 0, (15)

where
∫∫

dv is the integral over the fluid domain, S is the arclength along the free
surface, ti represents the components of its unit tangent vector and

u
(M)
j =

∑
j

∂Xij

∂t
ψ

(F)
j (16)

is the mesh velocity. The time derivative was evaluated by a second-order backward
Euler scheme (BDF2). The fully implicit treatment of the momentum equations leads
to a consistent mass representation. Similarly, the continuity equation (8) is weighted
with the bilinear pressure shape functions ψ(P )

l which yields

f
(P )
l =

∫∫
∂uj

∂xj
ψ

(P )
l dv = 0. (17)

Weighting the kinematic free-surface condition (9) by the one-dimensional quadratic
shape functions ψ(H)

l provides the equations which determine the unknown free-surface
heights Hj via

f
(H)
j =

∫ (
u− ∂Rh

∂t

)
· nψ(H)

j dS = 0. (18)

Finally, the discrete spine angles Aj were determined by algebraic conditions which
ensured that the spines did not intersect inside the fluid domain. A suitable set of
equations was generated by assuming that the spines behave like rigid rods which
pivot about the material points on the wall and are connected to neighbouring spines
by nonlinear springs, attached at the free ends. The equilibrium equations of this
mechanical system provide a sufficient number of equations to determine the Aj . The
nonlinearity of the springs ensures that the end points of the spines are kept apart.

2.2.2. Lubrication theory

If the non-dimensional film thickness is small, i.e. h = h∗/R0 � 1, and if h varies
slowly along the ring’s gently curved circumference, such that |dh/dζ| � 1, as in
figure 2(a), the flow in the liquid lining can be approximated by lubrication theory,
i.e.

∂h

∂t
+

∂

∂ξ

(
h3

3

∂κ
(lin)
h

∂ξ

)
= 0, (19)
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Figure 2. (a) Thin film on a gently curved substrate: the free surface can be parametrized by
Rh(ξ) = Rw(ξ) + h(ξ)N (ξ) and dV ≈ h dξ. (b) Thick film on a strongly curved substrate: the
wall normals N can intersect inside the fluid domain and dV 6≈ h dξ. The free surface is instead
parametrized by Rh(ξ) = Rw(ξ) + h(ξ)S(ξ) where the spines S(ξ) form an angle α(ξ) with the
normals on the wall.

where dξ = |∂Rw/∂ζ| dζ is the arclength along the (slightly) stretched ring centreline

and κ(lin)
h is the non-dimensional curvature of the air–liquid interface, linearized with

respect to the wall displacements and the film thickness h; see e.g. Schwartz &
Weidner (1995). A rescaling of h in (19) by the typical film thickness H∗0 shows
that the timescale for the redistribution of the fluid on the curved substrate is
given by TL = (R0/H

∗
0 )3µR0/σ

∗ � T which corresponds to a velocity scale of
UL = (H∗0/R0)

3σ∗/µ� U and a Reynolds number of ReL = (H∗0/R0)
3ρR0σ

∗/µ2 � Re.
Lubrication theory can be expected to provide an accurate description of the

surface-tension-driven redistribution of fluid during the early stages of the ring’s
buckling. However, the assumptions underlying its derivation from the full Navier–
Stokes equations are unlikely to be fulfilled during the later stages when the ring has
buckled strongly and the film thickness has become large and strongly non-uniform.
Use of lubrication theory in such situations leads to a number of problems, which
are illustrated in figure 2(b): (i) the approximation of the interface curvature κh by
its linearization κ(lin)

h becomes inaccurate; (ii) the derivation of equation (19) assumes
that the film thickness, h, is measured in the direction normal to the substrate,
implying a parametrization of the air–liquid interface as Rh(ξ) = Rw(ξ) + h(ξ)N (ξ).
For thick films on strongly curved substrates, this definition of a film thickness
becomes somewhat ambiguous. Furthermore, the parametrization of the air–liquid
interface breaks down if the wall normals intersect inside the fluid domain; (iii)
lubrication theory assumes that the substrate and interface curvatures are so small
that the volume dV of fluid ‘above’ a length dξ of substrate can be approximated by
dV ≈ h dξ. For thick films on strongly curved substrates, this approximation becomes
very poor and the numerical computations shown below indicate that this lack of
volume conservation in lubrication theory is the main reason for its poor performance
in ‘thick film regions’.

We shall now introduce a number of modifications to the lubrication theory model
(19) that will address these problems. (i) Following Gauglitz & Radke (1988), we
use the exact, fully nonlinear expression for the curvature κh in terms of the film
thickness and the wall displacement field, even though, from an asymptotic point
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of view, the linearized expression for the curvature would be sufficient. In many
applications (e.g. Halpern & Grotberg 1992; Johnson et al. 1991; Weidner, Schwartz
& Eres 1997; Jensen 2000) this approach has been shown to significantly improve the
accuracy of the lubrication theory model. This is because the system evolves towards
equilibrium states which are characterized by constant curvature of the air–liquid
interface. The use of the exact curvature ensures that these equilibrium states are
represented correctly (provided the substrate curvature is small; see below). (ii) To
extend the computations beyond situations in which the wall normals intersect inside
the fluid domain, we represent the free-surface position Rh by the method of spines
(11) via Rh(ξ) = Rw(ξ) + h(ξ)S(ξ), as illustrated in figure 2(b). Using the technique
described in § 2.2.1, we adjust the spine angles α(ξ) such that the spines remain
approximately normal in regions of small film thickness (where lubrication theory
remains applicable) while we allow them to rotate sufficiently to avoid intersection
in regions of large film thickness. (iii) Using the spine-based parametrization of the
air–liquid interface, we use elementary differential geometry to determine the exact
volume dV of fluid ‘above’ a length dξ of substrate, dV = M dξ, where

M(ξ) =

∫ h(ξ)

0

∣∣∣∣∂Rw∂ξ + θ
∂S

∂ξ

∣∣∣∣ dθ. (20)

Inserting this into the mass balance underlying the derivation of equation (19) then
yields the modified evolution equation

∂M

∂t
+

∂

∂ξ

(
h3

3

∂κh

∂ξ

)
= 0. (21)

Note that in regions of small substrate curvature, where we choose S ≈ N , we have
|∂S/∂ξ| � |∂Rw/∂ξ|. Hence, we recover ∂M/∂t ≈ ∂h/∂t, as in (19), in regions where
classical lubrication theory is valid.

It must be stressed that the modifications introduced above are not ‘rational’ in the
sense of a long-wavelength asymptotic theory. They do, however, present a necessary
extension of Gauglitz & Radke’s (1988) (equally non-rational) method to situations
in which the substrate curvature is large. Surface-tension-driven flows evolve towards
equilibrium states of constant interface curvature while conserving the volume of
fluid. On a flat substrate, classical lubrication theory is exactly volume conserving,
therefore the use of the exact interface curvature in (19) ensures that the the system’s
equilibrium states are represented correctly. For flows on strongly curved substrates,
volume conservation needs to be explicitly incorporated into the model. In our
formulation this is achieved by equation (20).

The numerical solution of (21) is no more difficult than the solution of (19) but
significantly easier than the solution of the full Navier–Stokes equations. The only
complication arises (in both formulations) from the fact that (19) and (21) involve the
second derivative of the interface curvature κh which itself contains second derivatives
of the wall displacement field vi. Fourth derivatives of the wall displacement field are
not available from the Hermite expansion in (4). Therefore, equation (21) was solved
by a mixed finite element method in which independent Hermite interpolations for
the film’s thickness and its curvature were used, i.e.

h =
∑
j,k

Hjkψjk and κ̃h =
∑
j,k

Kjkψjk. (22a, b)

The finite element expansion (22b) for the film curvature was then used in the Galerkin
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solution of the weak form of (21) which was integrated by parts to yield

f
(H)
jk =

∫ π/2

0

(
∂M

∂t
ψjk − h3

3

∂κ̃h

∂ξ

∂ψjk

∂ξ

)
dζ = 0. (23)

After discretizing the time derivative by a second-order backward Euler scheme
(BDF2), this provides a system of discrete equations for those Hjk which are not
determined by the symmetry conditions. The equations were augmented by the weak
equations for the discrete curvatures Kjk

f
(K)
jk =

∫ π/2

0

(∑
l,m

Klmψlm − κh
)
ψjk dζ = 0, (24)

where κh is the exact curvature of the air–liquid interface.

2.3. Fluid–solid interaction

The fluid and solid domains interact via the no-slip condition

u =
∂Rw

∂t
on the wall, (25)

and via the traction that the fluid exerts on the wall; the latter implies that the load
terms in the wall equations are given by

fi = pextNi + σ

[
−pδij +

(
∂ui

∂xj
+
∂uj

∂xi

)]
Nj, (26)

for the Navier–Stokes model and

f = pextN + σ

(
κhN + h

dκh
dξ

T

)
(27)

for the lubrication theory model. T and N are the unit tangent and the unit inner
normal on the deformed ring, respectively (see figure 1b), and

σ =
σ∗

R0K
(28)

is the non-dimensional surface tension which represents the ratio of the surface
tension forces to the wall’s bending stiffness.

The discretized fluid and solid equations were combined into a coupled system
of nonlinear algebraic equations which was solved by Newton’s method. The large,
sparse but poorly structured Jacobian matrix was generated by finite differencing,
taking the sparsity pattern of the matrix into account. The linear systems were solved
by Demmel et al.’s (1999) SuperLU solver with minimum degree ordering of the
equations. A basic adaptive time-stepping procedure was employed to increase the
temporal resolution in periods of rapid change: the time step was halved whenever
any of the discrete wall displacements or film thicknesses changed by more than a
critical threshold ∆max per time step. (∆max = 10−2 was used in most computations).
Thus, the slowly varying changes during the early stages of the system’s evolution
could be resolved with relatively large time steps (usually ∆t = 0.1) while the rapid
changes during the later stages were resolved accurately by employing much smaller
time steps (down to ∆t = 10−7). Regions of the fluid domain which tended to develop
into thin films were discretized by a larger number of elements to resolve the large
pressure variations in the resulting draining flows. We also used a larger number of
integration points for the shell elements in these regions.
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A variety of tests were carried out to validate the code: we compared the static ring
deformation and the value of pext at which opposite wall contact occurs for the first
time to the predictions of Flaherty, Keller & Rubinow’s (1972) inextensible Euler–
Bernoulli model (see also Appendix D) and compared the ring’s small-amplitude
oscillations to the eigenmodes predicted by linear theory (Soedel 1993). The newly
developed time-dependent Navier–Stokes solver was validated by prescribing a wall
displacement field (and thus, via (25), the velocity boundary conditions) for which a
divergence-free extension of the velocity field into the interior of the fluid domain
could easily be found. To make this velocity field an exact solution of the Navier–
Stokes equations, an appropriate body force term was added to the discretized
momentum equations (15). For all validation cases, excellent agreement between the
exact and the numerical solutions was obtained. Further validation was provided by
the comparison between the independently developed lubrication theory and Navier–
Stokes solvers (see § 3.3). Finally, the mesh independence of the results was confirmed
by repeating selected runs with a finer spatial resolution (increasing the number of
degrees of freedom from the standard resolution of ≈ 1700 (for 160 fluid and 10
wall elements) to ≈ 3500 (for 350 fluid and 20 wall elements)) and with reduced
time steps (by reducing the initial time step to ∆t = 10−3 and the threshold for
the time-step reduction to ∆max = 10−3; see figure 12). For the standard resolution,
a converged solution was typically obtained within 3–4 Newton iterations, which
required approximately 2 minutes of CPU time on a DEC Alpha 433au workstation.

3. Results
Before presenting results, we summarize the non-dimensional parameters which

govern the problem: the non-dimensional surface tension σ = σ∗/(R0K) represents
the ratio of surface tension forces to the wall’s bending stiffness. The Reynolds number
(on the lubrication theory scale) is given by

ReL =

(
H∗0
R0

)3
R0ρσ

∗

µ2

while

λT =
σ∗

µ

√
ρw

K
and ΛT =

(
H∗0
R0

)3
σ∗

µ

√
ρw

K

represent the ratio of the fluid timescale (on the Stokes and lubrication theory
scales, respectively) to the timescale for the wall’s bending oscillations. The two final
parameters are the non-dimensional wall thickness h/R0 and the non-dimensional
initial film thickness H∗0/R0.

All results in this paper were obtained for a non-dimensional wall thickness of
h/R0 = 1/20. This value was chosen as a compromise between the values in the lung
airways (which tend to be slightly thicker) and the limitations imposed by the use of
thin-shell theory. All other parameters were chosen to lie in a physiologically realistic
range, discussed in more detail in § 4.

3.1. Linear instability

A lengthy but straightforward normal mode analysis of the lubrication theory equa-
tions (19), coupled to Sanders’s (1963) moderate rotation approximation to the
Euler–Lagrange equations of the variational principle (1) yields the following results
(see Appendix B for further details). For a given value of the non-dimensional surface
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tension σ, the external pressure at which the system’s axisymmetric state becomes
unstable to non-axisymmetric perturbations of the form

v(ζ, t), h(ζ, t) ∼ exp

(
iNζ +

ω

λT
t

)
(29)

is given by

p
(buckl )
ext = N2 − 1− σ

(1−H0)
. (30)

This shows that N = 2 is the most unstable mode and that an instability (i.e.
Re(ω) > 0) occurs when the combined compression of the external pressure and the
surface tension exceeds the ring’s classical buckling pressure p(buckl )

ext (σ = 0) = N2 − 1.
Hence an increase in surface tension is destabilizing in that it lowers the buckling
pressure of the ring. This was already shown by Rosenzweig & Jensen (2002) whose
static stability analysis also revealed that the character of the static bifurcation
changes from super- to sub-critical when σ exceeds the critical value

σcrit =
3

2

(N2 − 1)2

N2
(1−H0)

3. (31)

Having established that an increase in surface tension destabilizes the system, we
shall now investigate its behaviour following an increase in pext above the buckling
pressure. In order to make meaningful comparisons between results of parameter
studies using different values of σ and H0, we shall subject all rings to the same excess
pressure

pexc = pext − p(buckl )
ext (σ,H0) = 0.05 (32)

above the buckling pressure. Note that, in the absence of the fluid layer, this excess
pressure would cause the ring to buckle slightly into an approximately elliptical shape
with a maximum radial displacement of v2

max = −0.153 at the point of strongest
inward collapse. A few computations were performed with other values of pexc . The
system’s qualitative behaviour remained unchanged from that shown below, provided
pexc did not become so large that the external pressure completely dominated the
ring’s compression.

Figure 3 shows the growth rate Re(ω) of the non-axisymmetric instability as a
function of the non-dimensional surface tension σ for various values of the initial
film thickness H0. For σ = 0, the fluid does not affect the ring’s deformation and
the system undergoes a purely elastic instability while the fluid passively redistributes
itself on the buckling ring. (Note that the limit σ = σ∗/(KR0)→ 0 is to be understood
as the limit in which σ∗/R0 � K , i.e. the surface-tension-induced pressure variations
in the fluid become much smaller than the ring’s bending stiffness.) The growth rate
in (29) is scaled on the ring timescale Tw , therefore Re(ω) at σ = 0 is independent of
the initial film thickness H0.

To explain the variations of the growth rate Re(ω) with an increase in non-
dimensional surface tension, shown in figure 3(a), we compare the pressure distribution
just before the loss of stability (at t = t0) to that shortly after the onset of buckling
(at t = t0 + ∆t): at t = t0, the ring is subject to a spatially uniform compression
which consists of the external pressure and the compressive load due to the surface
tension of the liquid lining (see figure 4a). As the ring buckles, the curvature of the
air–liquid interface becomes non-uniform and the resulting curvature gradient induces
a tangential pressure gradient in the liquid film. This pressure gradient drives fluid
into the buckling lobe and attempts to keep the air–liquid interface axisymmetric.
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Figure 4. Sketch of the pressure acting on the ring before and after buckling. During buckling, pext

remains constant whereas the fluid pressure whose magnitude is proportional to σ becomes more
negative in the part of the ring that buckles outwards. This stabilizing effect is more pronounced at
larger non-dimensional surface tension.

The surface-tension-induced pressure distribution also opposes the wall deformation
because the reduced fluid pressure in the buckling lobes pulls them back towards the
centre. At larger σ, the fluid pressure provides a greater contribution to the load on
the wall (see (26) and (27)). Hence, an increase in σ increases the stabilizing effect of the
non-uniform fluid pressure distribution, as shown in figure 4(b), and thus reduces
the growth rate of the non-axisymmetric instability.

For a given value of the surface tension, fluid in thicker films redistributes itself
more rapidly in response to changes of the interfacial curvature. Hence, for thicker
films, the curvature of the air–liquid interface remains more uniform while the ring
buckles and the tendency of the surface-tension-induced pressure distribution to
oppose the ring’s non-axisymmetric deformation is reduced. This effect is responsible
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for the increase in Re(ω) with H0, shown in figure 3(a). The figure also shows that
at sufficiently large surface tension, Re(ω) ∼ H3

0 , which indicates that the dynamics
of the instability are controlled by the surface-tension-driven redistribution of the
fluid in the liquid lining. This may be confirmed by comparing the growth rates in
figure 3(a) to those obtained from an analysis in which wall inertia is neglected (by
setting the time derivatives in the shell equations to zero). For the parameter values
used in figure 3(a), the growth rates with and without wall inertia are practically
indistinguishable – noticeable discrepancies only arise at values of H0 which are too
large to justify the use of lubrication theory and at very small values of the surface
tension.

The broken lines in figure 3(b) show that an increase in the timescale ratio λT
increases the growth rate of the non-axisymmetric instability. This is because an
increase in λT reduces the timescale for the surface-tension-driven redistribution of
fluid on the buckling ring. Similar to the effect of an increase in H0, an increase in λT
therefore reduces the departure of the air–liquid interface from its axisymmetric state
and thus reduces the stabilizing effect of the non-uniform fluid pressure distribution.
For λT → ∞, the fluid redistributes itself instantaneously and the air–liquid interface
always remains axisymmetric. In this case, the growth rate of the instability becomes
independent of σ and approaches the value for the ring without a fluid layer.

In the context of the airway closure problem, it is of interest to consider the effect
of variations in the dimensional surface tension σ∗. For this purpose, it is important
to realize that both σ and λT scale linearly with σ∗. Hence an increase σ∗ requires
λT/σ = const. which results in a competition between two effects: the increase in σ
tends to decrease the growth rate, while the accompanying increase in λT tends to
increase it. The solid line in figure 3(b), which shows Re(ω) for λT/σ = 15, indicates
that, at small values σ, the stabilizing effect of an increase in σ dominates, whereas
for larger values of σ, the increase in growth rate due to the increase in λT becomes
more important.

3.2. Nonlinear behaviour

We shall now use the numerical techniques described in § 2 to follow the instability
into the large-displacement regime. Motivated by the results of the linear instability
analysis, we initially neglect all inertia (by setting λT = 0 and Re = 0). The same
initial conditions (representing an undeformed axisymmetric ring, lined with a liquid
film of uniform thickness H0) are used for all cases and all rings are subjected to
the same excess pressure pexc = 0.05. A small cosinusoidal pressure perturbation
pcos = 10−4 cos(2ζ) was added to the load terms in the shell equations, to force
the numerical solution from the axisymmetric state. We illustrate the system’s non-
axisymmetric evolution by plotting the radii of four control points (identified in
figure 5a) on the wall and the air–liquid interface as a function of time.

3.2.1. Effect of variation in the surface tension

First, we investigate how the ring’s post-buckling behaviour is affected by changes
to the surface tension σ∗. Again, it is important to realize that an increase in σ∗ not
only increases the non-dimensional surface tension σ = σ∗/(R0K) but also decreases
the lubrication theory timescale TL = (R0/H0)

3µR0/σ
∗ which, in the absence of inertia,

is the only remaining timescale in the problem. When investigating how changes in σ∗
affect the temporal evolution of the system, it is therefore most instructive to present
the results on a surface-tension-independent timescale. In the current section, we will
therefore non-dimensionalize time by T̂L = σTL = (R0/H0)

3µ/K .
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Figure 5. (a) Sketch of the control radii used to characterize the system’s non-axisymmetric
evolution. (b) Evolution of a liquid-lined ring for H0 = 0.2 and σ = 0.864 = 0.5σcrit .

Figure 5 shows the evolution of an initially (t = 0) axisymmetric ring, lined with
a uniform film of thickness H0 = 0.2 (corresponding to σcrit = 1.728 for N = 2)
and relatively small surface tension σ = 0.864 = 0.5σcrit . As the ring buckles non-
axisymmetrically (R2 decreases by about 20% while R1 increases by a slightly smaller
amount), the surface-tension-driven flow in the liquid lining attempts to keep the air–
liquid interface axisymmetric (Rh1 ≈ Rh2, apart from the short period of time during
which the ring buckles rapidly). Following the initial instability, the system approaches
a new steady state. Figure 6 illustrates the corresponding flow in the liquid lining: the
slight non-axisymmetry of the air–liquid interface generates a pressure distribution
which opposes the wall deformation and drives fluid towards the part of the ring
that buckles outwards. In the final steady state, an axisymmetric air–liquid interface
is contained inside the buckled ring. Note that, since the volume of fluid in the liquid
lining is conserved, the reduction in the ring’s cross-sectional area during buckling
translates into a reduction of the luminal area. Hence the curvature of the air–liquid
interface, and with it the compressive load on the ring, increases slightly while the ring
buckles. Compared to the case of a ring without a liquid lining, the maximum radial
displacement increases to v2

max = −0.230 at the point of strongest inward collapse.
Figure 7(a) compares the system’s evolution for an increased non-dimensional

surface tension of σ = 2.5σcrit to the behaviour at σ = 0.5σcrit . We note that, as
predicted by the linear instability analysis, the increase in dimensional surface tension
σ∗ slightly increases the initial growth rate of the instability. As before, surface
tension tries to redistribute the fluid in order to maintain an axisymmetric air–liquid
interface while the ring buckles. However, now the increase in the compressive load
during buckling deforms the ring more strongly and it becomes impossible to ‘fit’
an axisymmetric air–liquid interface of the required curvature into the buckled ring.
Hence, even though the large-time behaviour for σ = 2.5σcrit , illustrated in figure 7(a),
appears to be similar to that for σ = 0.5σcrit , the system depicted in figure 7(b) is not
in equilibrium: Rh1 remains significantly larger than Rh2, indicating that the air–liquid
interface is not axisymmetric as would be required for an equilibrium state. Hence fluid
continues to drain from the ever-thinning thin-film region so that h2 = R2 − Rh2 → 0
as t→∞. In the real physical system, Van der Waals forces would ultimately rupture
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the film once its thickness is lower than a critical value (of the order of nanometers;
see e.g. Oron, Davis & Bankoff 1997). After rupture, the system would approach one
of Rosenzweig & Jensen’s (2002) equilibrium configurations with partially dry walls.
Film rupture and the subsequent contact line motion have not been included in the
present model but the computations show that the film thinning takes place over very
long times.

A further increase of the non-dimensional surface tension to σ = 5.0σcrit leads
to a dramatic change in the system’s behaviour, as illustrated in figure 8: initially,
the increase in σ and σ∗ merely leads to a further increase in the growth rate
of the non-axisymmetric instability. However, at this value of the surface tension,
the additional ring compression generated during the buckling process becomes so
strong that the ring must undergo larger and larger deformations to generate the
bending moments required to balance this compression. The larger deformations
further reduce the radius of the air–liquid interface and thus further increase the
ring compression. Ultimately, this results in a ‘catastrophic’ collapse (as t∗/T̂L →
Tclos ≈ 21.19) during which the air–liquid interface shrinks to a point and the ring
becomes completely occluded. Figure 9 illustrates the corresponding flow field and
the pressure distribution in the liquid lining: after the initial moderate buckling
(figure 9a), the system temporarily settles into a slowly changing configuration in
which fluid drains slowly from the thin-film region into the buckled lobe where the
fluid pressure is approximately uniform (figure 9b). Figure 9(c) shows the early stages
of the final collapse during which the fluid velocity rapidly increases by several orders
of magnitude. The air–liquid interface collapses inwards while continuously lowering
the fluid pressure, thus further accelerating the ring collapse. The details of the very
final stages of the collapse are complicated and difficult to resolve numerically but the
end result is a completely occluded ring: in the context of the physiological problem
we have airway closure despite the fact that the volume of fluid is insufficient to
occlude the axisymmetric airway.

Finally, figure 10 shows that after a further increase in surface tension to σ =
10.0σcrit , the increase in ring compression during the early stages of the buckling is
already sufficient to initiate the final catastrophic collapse – the intermediate period,
during which fluid drains slowly out of the thin-film region while the ring remains
nearly stationary, disappears. This behaviour is representative of all larger values of
the surface tension.

As mentioned above, the presentation of the results on a surface-tension-
independent timescale implies that an increase in σ can be interpreted as an in-
crease in the dimensional surface tension σ∗. This situation is characteristic of many
pulmonary diseases and the results presented above indicate that an increase in σ via

Figure 6. The shape of the fluid domain, the velocities and the pressure distribution for a buckling,
liquid-lined ring; H0 = 0.2, σ = 0.5σcrit . Note the different scales for the vector lengths and pressure
contours. The velocities are scaled on the lubrication scales. The inset shows the detail of the flow
in the thin-film region. The dashed line in (d ) represents a circle of radius Rh2 and illustrates that

the air–liquid interface has become nearly axisymmetric. (a) t∗/T̂L = 1.76, (b) 20.28, (c) 29.54,
(d ) 92.50.

Figure 9. Collapse of a liquid-lined ring for H0 = 0.2 and σ = 5.0σcrit . Note the different scales
for the vector lengths and pressure contours. The velocities are scaled on the lubrication scale. The

insets show the details of the flow in the thin-film region. (a) t∗/T̂L = 17.55, (b) 19.40, (c) 21.19,
(d ) 21.19.
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Figure 7. (a) Comparison of the evolution of two liquid-lined rings with σ = 4.32 = 2.5σcrit and
σ = 0.5σcrit , respectively. H0 = 0.2 in both cases. (b) The shape of the fluid domain and the

velocities (on the lubrication scale) at large times for σ = 2.5σcrit , t
∗/T̂L = 26.64: the system is

not in equilibrium and fluid continues to drain slowly out of the thin-film region. The dashed line
represents a circle of radius Rh2 and illustrates that the air–liquid interface is not axisymmetric.

an increase in σ∗ is strongly destabilizing: it not only reduces the buckling pressure
but also increases the growth rate of the instability. An alternative mechanism for an
increase in σ = σ∗/(R0K) is given by a structural weakening of the airway walls which
occurs, e.g., in emphysema, and manifests itself in a reduction of the airway’s bending
stiffness K . A change to σ by this mechanism does not affect the fluid timescale.
Figure 11 illustrates the system’s evolution (for the same values of σ as before) on
the lubrication theory timescale t∗/TL. The figure shows that an increase in σ at
constant TL leads to a partial stabilization of the system: while the increase in σ still
reduces the buckling pressure, the growth rates at a fixed value of the excess pressure
are strongly reduced and it takes much longer for the catastrophic collapse and the
associated airway closure to occur (if it does).
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3.2.2. Inertial effects

The early stages of the ring’s collapse are governed by the slow surface-tension-
driven redistribution of fluid in the liquid lining and inertia is unlikely to be of
great importance. However, wall and fluid inertia must be expected to play some
role during the rapid collapse of the air–liquid interface in the final stages of airway
closure (if it occurs). To assess the significance of wall and fluid inertia, figure 12
compares the system’s evolution (for H0 = 0.2 and σ = 5.0σcrit ) with and without
inertial effects. The relevant parameters, ReL = 40 and ΛT = Tw/TL = 8, used
in these computations are representative of those in the physiological problem (see
§ 4). Figure 12 shows that inertia merely opposes any rapid changes while affecting
neither the qualitative behaviour nor the final outcome of the instability. However, the
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addition of wall inertia has a secondary, more subtle effect which does not show up in
figure 12 but makes accurate numerical simulations more computationally expensive.
The inclusion of wall inertia enables the ring to carry out oscillations in two main
modes: (i) low-frequency bending oscillations whose timescale Tw was used in the
timescale ratio λT and (ii) high-frequency extensional oscillations which correspond
to the ring’s axisymmetric ‘breathing’ mode. Both oscillations are excited by the fluid
forcing but the amplitude of the high-frequency extensional oscillations remains small
because of the ring’s large extensional stiffness. Nevertheless, these wall oscillations
are transmitted into the fluid where they result in rapidly oscillating radial pressure
gradients which are superimposed onto the slowly varying pressure field induced by
the much slower bending deformations. To resolve these high-frequency oscillations,
much smaller time steps were required in the numerical integration.

3.2.3. Variation in the film thickness

We will now investigate the effect of variations in the initial film thickness H0.
Provided all other parameters remain unchanged, an increase to H0 has two main
effects: (i) the lubrication timescale TL ∼ H−3

0 is strongly reduced; (ii) the increase
in the compressive load during buckling (caused by the reduction in luminal area
and the associated increase in the curvature of the air–liquid interface) increases with
H0 (see Appendix C). The latter effect facilitates the occurrence of the catastrophic
collapse since it is caused by the inability of the ring’s bending moments to balance
the increase in the compressive load during buckling. This is illustrated in figure 13
which shows the system’s evolution for various values of the surface tension σ
and for H0 = 0.3 (corresponding to σcrit = 1.158): for this larger film thickness, the
catastrophic collapse can be seen to occur at much lower values of σ and in particular
for σ < σcrit . Computations at smaller values of H0 confirm that a decrease in film
thickness has the expected opposite effect, i.e. the growth rate of the instability is
reduced and the catastrophic collapse occurs at larger values of σ; see figure 16 in
the next section.
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Figure 12. Effect of wall and fluid inertia on the evolution of a liquid-lined ring for σ = 5.0σcrit
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3.3. Comparison with lubrication theory

Having established that the dynamics of the ring collapse are controlled by the surface-
tension-driven redistribution of fluid in the liquid lining, we will now investigate if
this behaviour can be captured by the lubrication theory model developed in § 2.2.2.

We will first assess the accuracy of the volume-conserving lubrication theory model
in a model problem without fluid–structure interaction. For this purpose, we consider
the flow in a fairly thick film (by the standards of lubrication theory) on a ring
which buckles under the effect of an external pressure of pext = 3.3. Setting the
non-dimensional surface tension to σ = 0 uncouples the ring’s deformation from the
fluid flow: the ring undergoes periodic large-displacement oscillations while the fluid
redistributes itself passively on its surface. This is illustrated in figure 14 in which
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Figure 14. Comparison of Stokes flow and lubrication theory for the flow on a buckling ring
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wall and the air–liquid interface. (b) Comparison of the wall and air–liquid interface positions at
t∗/TL = 20.64. The legend in (b) applies to both figures. Note that the Stokes flow solution is nearly
indistinguishable from volume-conserving lubrication theory.

the solid and broken lines represent the control radii on the wall and the air–liquid
interface, respectively. As the ring buckles, fluid drains out of the thin-film region
near the top of the ring (R2 − Rh2 → h2,min � H0 = 0.2) as the surface-tension-
induced pressure gradient drives fluid into the buckling lobe where the film thickens
substantially (R1 − Rh1 → h1,max ≈ 0.65 for Stokes flow). As the ring reopens, the
flow reverses its direction and fluid moves back into the thin-film region. Because
of the large flow resistance in the thin film, the initial phase of the film thickening
takes place very slowly until, at t∗/TL ≈ 25.4 (marked by the arrow), the film has
become thick enough to enable more rapid flows into this region. Following this, the
fluid becomes more mobile, allowing the air–liquid interface to quickly return to an
axisymmetric shape.

The dash-dotted and dashed lines in figure 14 represent the predictions for Rh1 and
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Rh2 from the ‘classical’ lubrication theory model (19) and from the volume-conserving
formulation (20)–(21), respectively. In both cases, the interface position was resolved
by the method of spines and the exact expression for the interface curvature κh was
used. The comparison with the results from the Stokes model (represented by the
dotted line) shows that the ‘classical’ lubrication theory model strongly underestimates
the film thickening in the lobe. In contrast, the volume-conserving model is able to
reproduce the motion of the air–liquid interface extremely well, despite the fact that
the film thickness can become rather large. This is confirmed by a representative plot
of the wall and interface positions shown in figure 14(b).

We have performed a large number of such comparisons for different parameter
values (film thicknesses, amplitudes of the wall displacement and timescale ratios) and
have found the agreement between Stokes flow and the volume-conserving lubrication
theory model to be consistently good. We believe that this provides interesting insight
into the fluid mechanics of this problem. The classical lubrication theory model (14)
describes the surface-tension-driven flow into the buckling lobe and thus provides a
partial explanation for the film thickening in this region. The discrepancy with the
Stokes flow solution shows that the film thickening due to simple volume conservation
is of equal importance in this problem. It is clear that if there is little or no surface-
tension-driven flux along a liquid-lined substrate then an increase in the wall curvature
alone must already lead to a significant thickening of the film. Classical lubrication
theory fails to capture this effect.

We also note that the fluid velocities inside the buckled lobe can be of considerable
magnitude and that the Stokes flow field differs noticeably from the simple unidirec-
tional parabolic velocity profile assumed in lubrication theory (see figure 15c). The
fact that the volume-conserving lubrication theory model is nevertheless capable of
accurately capturing the interface motion indicates that the details of the flow field
inside the lobe are of minor importance – they merely represent the two-dimensional
flow field required to achieve overall volume conservation. The dynamics of the
flow are controlled by the flow in the thin-film region in which the assumptions of
lubrication theory remain valid throughout the system’s evolution.

To assess the suitability of the volume-conserving lubrication theory model in
the fully coupled fluid–structure interaction problem, we must also investigate the
accuracy of the lubrication theory approximation (27) for the traction that the fluid
exerts on the wall. Figure 15(a, b) shows the Stokes velocity and pressure fields and the
corresponding pressure distribution along the wall during the early stages of the ring’s
buckling. Note that lubrication theory assumes that (i) the wall-normal velocities are
much smaller than the tangential velocities and (ii) the pressure remains uniform
through the thickness of the liquid lining. Figure 15(a) shows that these assumptions
are violated most strongly near the lines of symmetry where the velocities tangential
to the wall tend to zero, whereas the normal velocities (induced by the substrate
motion) become relatively large. This generates a normal pressure gradient that is
responsible for the noticeable curvature of the isobars in these regions and increases
the stabilizing effect of the fluid pressure on the wall deformation – the fluid pressure
becomes more (less) compressive where the wall buckles outwards (inwards). This
effect is not represented in the lubrication theory model, and thus its prediction for
the pressure distribution underestimates the pressure variations along the wall as
shown in figure 15(b).

During the later stages of the non-axisymmetric collapse, the fluid domain becomes
clearly divided into two distinct regions, as shown in figure 15(c): the thin-film region
in which lubrication theory is valid and the large region in the buckled lobe in which
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Figure 15. Flow on a buckling ring without fluid–structure interaction. H0 = 0.2, σ = 0, ΛT = 8.
(a) and (c) show the Stokes velocity and pressure distribution in a slightly and strongly buckled
ring; (b) and (d ) show the corresponding Stokes and lubrication pressure distributions along the
wall. (a, b) t∗/TL = 9.76; (c, d ) t∗/TL = 19.36.

the pressure remains approximately uniform despite the significant flows induced by
the volume-conserving redistribution of fluid. Figure 15(d ) shows that in this regime,
lubrication theory provides an excellent prediction for the pressure distribution on
the wall.

Figure 16(a, b) illustrates the buckling of a ring which is lined with a film of initial
thickness H0 = 0.1 when the full fluid–structure interaction is taken into account
(σ = 10σcrit and σ = 100σcrit , respectively, where σcrit = 2.460). The solid and dashed
lines represent the Stokes flow and lubrication theory results, respectively. Note that,
as mentioned in § 3.2.3, at this smaller film thickness, the system can be subjected to
much larger surface tensions, σ/σcrit � 1, without undergoing a catastrophic collapse.
Furthermore, the timescale for the collapse can be seen to be significantly larger than
for H0 = 0.2. Since lubrication theory underestimates the stabilizing effect of the fluid
pressure distribution, it overestimates the initial growth rate of the non-axisymmetric
instability. However, the lubrication theory model can be seen to capture the large-
displacement behaviour extremely well since it provides a good approximation for the
fluid traction in this regime.

Extensive further computations confirmed this behaviour for a wide range of
parameters. The degree to which the lubrication theory model overestimates the
initial growth rate of the non-axisymmetric instability increases with the initial film
thickness. However, even for thicker films, the large-displacement behaviour tends
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Figure 16. Comparison of Stokes flow and lubrication theory for the full fluid–structure interaction
problem. H0 = 0.1; no wall inertia. (a) σ = 24.6 = 10σcrit , (b) σ = 100σcrit . For clarity, only the radii
of the wall control points R1 and R2 are shown. Time is scaled on the lubrication-theory timescale.

to be captured extremely well. Exceptions from this behaviour were only observed
in cases where the ultimate catastrophic collapse was preceded by a period of slow
change as in figure 8. In such cases, the small remaining differences between the
Stokes and lubrication theory tractions were sufficient to significantly affect the time
at which the ultimate collapse occurred. Note also that the computations based on the
lubrication theory model could not be continued as far into the catastrophic collapse
as those based on the solution of the (Navier–)Stokes equations. During the final, very
rapid collapse, extremely small time steps have to be used in the time integration of
the discretized equations. During this phase of the computation, the condition number
of the Jacobian matrix in the Newton iteration deteriorated significantly and caused
severe convergence problems. These convergence problems were more pronounced in
the lubrication theory computations and forced us to terminate the time integration
at earlier times, as shown in figure 16(b).
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4. Discussion
The numerical results presented in the previous sections show that, for sufficiently

large surface tension, the dynamic post-buckling behaviour of liquid-lined circular
rings is controlled by the dynamics of the surface-tension-driven redistribution of
fluid in the liquid lining. This behaviour can be captured well by a volume-conserving
lubrication theory model. An increase in surface tension was shown to be strongly
destabilizing; this is in agreement with Rosenzweig & Jensen’s (2002) static analysis
which identified σcrit as the surface tension at which the static bifurcation changes
its character from super- to sub-critical. This already suggests that an increase of
σ beyond σcrit will result in larger post-buckling displacements as the system has
to evolve towards a ‘more distant’ non-axisymmetric equilibrium state. However, the
time-dependent computations in the present study indicate that the system’s dynamic
post-buckling behaviour is more complicated than suggested by the static analysis.
For instance, we have identified situations (mainly for relatively thick films) in which
a catastrophic collapse can occur for σ/σcrit < 1; also, some of the equilibrium states
identified in Rosenzweig & Jensen (2002) require very long times to develop.

To assess the significance of the results for the physiological problem of airway
closure we assume that the process takes place in the terminal bronchioli and use
Halpern & Grotberg’s (1992) estimates for the physical parameter values, namely
R0 = 250 µm, σ∗ = 20 dynes cm−1, ρw = ρ = 1000 kg m−3, µ = 10−3 kg m−1 s−1,
E = 6 × 104 dynes cm−2, ν = 0.49 and h/R0 = 1/10. For an initial non-dimensional
film thickness of H0 = 0.2, as used in § 3, this corresponds to the non-dimensional
parameters σ = 120, ReL = 40, λT = 774.9 and ΛT = 6.20. Of particular interest is the
estimate for the non-dimensional surface tension σ since it is very much larger than
the corresponding value of σcrit = 1.782. Computations with the above parameter
values yield a dimensional closure time (defined as the time between the onset of the
non-axisymmetric instability and the occlusion of the airway) of Tclos ≈ 0.8 s which is
of the same order of magnitude as the period of a normal breathing cycle.

It is interesting to note that our investigation of the system’s behaviour at constant
excess pressure (which compensates for the initial destabilization due to e.g. an increase
in surface tension) is directly applicable to the analysis of a common treatment of the
neonatal Respiratory Distress Syndrome (nRDS). As mentioned in the introduction,
nRDS is caused by the lack of surfactant in the lungs of prematurely born infants
and makes their lungs strongly liable to collapse. In the context of the present work,
the respiratory problems caused by the large surface tension can be attributed to
both the reduction in buckling pressure and the increased propensity of the airways
to undergo a catastrophic collapse during which they become occluded. Mechanical
ventilators used for the artificial respiration of infants suffering from nRDS tend
to subject the infants’ lungs to a positive base pressure which compensates for the
additional surface-tension-induced compression and thus keeps their lungs distended.
The artificial respiration often utilizes a technique known as ‘Positive End Expiratory
Pressure (PEEP)’ in which the gas exchange is performed by small-amplitude, high-
frequency oscillations about this base state. This situation is very similar to the
scenario considered in the present study: we compensated for the surface-tension-
induced decrease of the buckling pressure by an appropriate reduction of the external
pressure which kept the excess pressure pexc = pext − pbuckl constant.

It should be noted that physiological observations of airway closure show that
the airways buckle with larger circumferential wavenumbers than considered in this
study. This has motivated other investigators (e.g. Hill et al. 1997 and Rosenzweig
& Jensen 2002) to consider buckling at higher wavenumbers despite the fact that
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N = 2 is the most unstable mode for this system. The increase in wavenumber in the
physiological system is likely to be caused by finite length effects (shorter cylindrical
tubes tend to buckle with higher circumferential wavenumbers; see Yamaki 1984), by
the effect of the tethering provided by the surrounding lung tissue (Wang, Watson
& Kamat 1983) and/or by the multilayer structure of the airway walls (Wiggs et al.
1997), all of which were neglected in the present study.

The film thicknesses used in the present study are larger than those typically
encountered in an axially uniform liquid lining in the healthy lung (see e.g. Bastacky
et al. 1995). To some extent, the use of larger-than-average film thicknesses in our
two-dimensional model is appropriate since in a three-dimensional airway, we expect
buckling to be initiated only when and where the axisymmetric Rayleigh instability
has led to a significant local increase in the film thickness. Nevertheless, we expect the
results shown in the previous sections to be mainly applicable to situations in which
diseases such as oedema have already led a noticeable thickening of the liquid lining.

The present study has neglected the role of surfactants, the presence of which
is known to affect the dynamics of surface-tension-driven flows in the lung’s liquid
lining (see e.g. Halpern & Grotberg 1993 or Yap & Gaver 1998). When the ring
buckles, the flow into the buckling lobe advects surfactant into this region and
thus reduces the local surface tension. This reduces the flow rate into the buckling
lobe (and thus enhances the non-axisymmetry of the air–liquid interface) but it also
reduces the stabilizing effect of the non-uniform fluid pressure distribution. Since these
two mechanisms have opposite effects on the growth rate of the non-axisymmetric
instability, it is not clear how the presence of surfactant will affect the dynamics of
the non-axisymmetric airway collapse. However, the presence of surfactant will not
change the static equilibrium positions towards which the system evolves. Therefore
the final outcome of the non-axisymmetric instability is likely to be unaffected.

Finally, it should be stressed again that the analysis presented in this paper has
neglected all three-dimensional effects and that we expect the three-dimensional system
to be even more susceptible to airway closure than its two-dimensional counterpart.
This implies that the paper’s main conclusion, namely that airway closure can occur
at fluid volumes which are too small to occlude an axisymmetric airway, also applies
to the airways of the lung.

We are grateful to Dr Andrew Hazel for many helpful discussions and would like
to acknowledge financial support from the EPSRC for a PhD project studentship
for J. P. W. We are also grateful to the anonymous referees whose comments led to a
significant improvement of an earlier version of this paper.

Appendix A. The strain and bending measures
Given the parametrization of the ring’s deformed centreline in terms of the La-

grangian coordinate ζ, the strain and bending measures used in the principle of virtual
displacements are defined as follows:

γ =
1

2

(
∂Rw

∂ζ
· ∂Rw

∂ζ
− 1

)
and κ = −

(
1−N · ∂

2Rw

∂ζ2

)
, (A 1)

where

N =
(∂Rw/∂ζ)× e3

|(∂Rw/∂ζ)× e3| (A 2)

is the inner unit normal on the deformed ring.
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For small strain and moderate rotations, i.e. during the early stages of the ring’s
collapse, the strain and bending measures can be approximated by Sanders’s (1963)
moderate rotation theory as

γ = 1
2
(v2
,ζ − v1)2 + v1

,ζ + v2 (A 3)

and

κ = v1
,ζ − v2

,ζζ . (A 4)

These expressions were used in the linear instability analysis.

Appendix B. Linear instability
Before buckling, the relation between the external pressure and the radial ring

displacement V0 is given by

pext = − 12

(h/R0)2
V0 − σ

1 + V0 −H1

, (B 1)

where

H1 = 1 + V0 −
√

(1 + V0)2 +H0(H0 − 2) = H0 − H0

1−H0

V0 + O(V 2
0 ). (B 2)

is the pre-buckling film thickness which increases as the ring is compressed.
The growth rate ω of the normal mode perturbations (29) to the axisymmetric pre-

buckling state is determined by the roots of the fifth-order polynomial detM(ω) = 0,
where the coefficients of the matrix M are given by

M11 =
1

12

(
h

R0

)3

ω2 +N2 +
1

12

(
h

R0

)2

N2,
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σH1iN
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h

R0

)2

N2

)
,

M13 =
1

12

(
h

R0

)2

σH1iN
N2 − 1

(1 + V0 −H1)2
,
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h
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,
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Figure 17. Deformation of a ring of wall thickness h/R0 = 1/20 under constant external pressure.
Solid lines: predictions from Flaherty et al.’s (1972) inextensible Euler–Bernoulli model; dashed
lines: wall shapes from the Lagrangian model described in § 2.1. pext = 3.0, 3.21, 3.87 and 5.25.

The system loses its stability when ω = 0. This occurs at an axisymmetric pre-buckling
displacement of

V
(buckl )
0 = − 1

12

(
h

R0

)2 (
N2 − 1

)
. (B 3)

Since h/R0 � 1, it follows that |V (buckl )
0 | � 1. Using this result in (B 1) shows that the

buckling pressure is given by

p
(buckl )
ext = N2 − 1− σ

(1−H0)
+ O((h/R0)

2). (B 4)

Appendix C. The effect of an increase in H0

To illustrate how an increase in the initial film thickness H0 affects the increase in
ring compression during buckling, we consider a slightly buckled ring whose initial
non-dimensional cross-sectional area A0 = π has been reduced to A < A0. Mass con-
servation requires that the fluid always occupies the same cross-sectional area Ah =
πH0(2−H0). This leaves a luminal area of AL = A−Ah and we have AL ≈ π/κ2

h if the
ring’s deformation is small enough for an axisymmetric air–liquid interface (of curva-
ture κh) to fit into the buckled ring without rupturing the liquid film. Combining these
relations, we find that the pressure jump ∆p over the air–liquid interface is given by

∆p = σκh =
σ√

A− πH0(2−H0)
. (C 1)

This shows that ∂∆p/∂H0 > 0, implying that the additional compression of the ring
for a given degree of collapse (specified by A) increases with H0.
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Appendix D. Comparison with Flaherty et al.’s (1972) wall model
The static analyses of Hill et al. (1997) and Rosenzweig & Jensen (2002) used

Flaherty et al.’s (1972) inextensible Euler–Bernoulli model to describe the deformation
of the airway wall. Figure 17 compares the wall shapes predicted by Flaherty et al.’s
(1972) model to those obtained from the Lagrangian wall model used in the present
study. In both cases the ring deformation is induced by a spatially uniform external
pressure. The predictions of the two models are in good agreement. Our decision to
use the (arguably) more complex wall model described in § 2.1 was motivated by the
fact that it is easier to extend it to three-dimensional geometries.
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